# NIKOLA TESLA: THE FIRST JEDI

## Method of Lighting Wireless Vacuum Tubes Devoid of Any Electrodes Placed In An Alternating Electrostatic Field.

In 1891, just before becoming an American citizen, Nikola Tesla was asked to lecture before the American Institute of Electrical Engineers at the Columbia University in New York. He performed experiments with alternating currents of very high frequency and left an audience of America’s greatest engineers spell-bound as he demonstrated a new theory of light. This lecture would be the first public demonstration of transmitting wireless energy making Tesla the true father of radio and wireless power.

Throughout his investigations of alternating currents of very high frequency phenomena, Tesla satisfied himself with the conclusion that light bulbs using carbon filaments were inferior and that an electric field of sufficient intensity could be made to fill a room and light electrodeless vacuum tubes. This was done by connecting two large sheets of zinc to the terminal of the circuit with the sheets being spread apart about fifteen feet away from each other. The sheets served as condensers, and both received the charge of electricity from the wires connecting the sheets to the transformer creating an electric field between the two. Tesla would then introduce vacuum tubes and place them between the zinc sheets–illuminating the tubes and lighting the room. He waved the vacuum tubes around like a Jedi showcasing the first light sabers, and the tubes continued to glow as long as they remained in the electric field.

He accomplished this by upping the speed of his dynamo, transforming his alternating currents into a continuous flow of static currents. This allowed him to pass a large amount of energy from sheet to sheet, or even through his body, without any harm. To help better explain this, direct currents carry an electric charge along a conductor which travel in one single direction, like a straight line, while the charge in AC alternate back and forth in waveform. Both are extremely dangerous! Static currents, on the other hand, are stationary with no movement. Tesla would speed up his AC so fast that they would transform into a static current, allowing him to create a static field of electricity capable of lighting his wireless bulbs.

The electrical wizard went on to show the absolute harmlessness of his electric system by passing thousands of volts of electricity through his body–lighting light bulbs and shooting sparks out of his finger tips.

These amazing demonstrations would set Tesla apart from the rest of the scientific world, and the inventor would be showered with awards and invitations from all around the world begging him to share his work.

# NIKOLA TESLA: THE FIRST JEDI

## Method of Lighting Wireless Vacuum Tubes Devoid of Any Electrodes Placed In An Alternating Electrostatic Field.

In 1891, just before becoming an American citizen, Nikola Tesla was asked to lecture before the American Institute of Electrical Engineers at the Columbia University in New York. He performed experiments with alternating currents of very high frequency and left an audience of America’s greatest engineers spell-bound as he demonstrated a new theory of light. This lecture would be the first public demonstration of transmitting wireless energy, making Tesla the true father of radio and wireless power.

Throughout his investigations of alternating currents of very high frequency phenomena, Tesla satisfied himself with the conclusion that light bulbs using carbon filaments were inferior, and that an electric field of sufficient intensity could be made to fill a room and light electrodeless vacuum tubes. This was done by connecting two large sheets of zinc to the terminal of the circuit with the sheets being spread apart about fifteen feet away from each other. The sheets served as condensers, and both received the charge of electricity from the wires connecting the sheets to the transformer, creating an electric field between the two. Tesla would then introduce vacuum tubes and place them between the zinc sheets–illuminating the tubes and lighting the room. He waved the vacuum tubes around like a Jedi showcasing the first light sabers, and the tubes continued to glow as long as they remained in the electric field.

He accomplished this by upping the speed of his dynamo, transforming his alternating currents into a continuous flow of static currents. This allowed him to pass a large amount of energy from sheet to sheet, or even through his body, without any harm. To help better explain this, direct currents carry an electric charge along a conductor which travel in one single direction, like a straight line, while the charge in AC alternate back and forth in waveform. Both are extremely dangerous! Static currents, on the other hand, are stationary with no movement. Tesla would speed up his AC so fast that they would transform into a static current, allowing him to create a static field of electricity capable of lighting his wireless bulbs.

The electrical wizard went on to show the absolute harmlessness of his electric system by passing thousands of volts of electricity through his body–lighting light bulbs and shooting sparks out of his finger tips.

These amazing demonstrations would set Tesla apart from the rest of the scientific world, and the inventor would be showered with awards and invitations from all around the world begging him to share his work.

# NIKOLA TESLA: THE FIRST JEDI

## Method of Lighting Wireless Vacuum Tubes Devoid of Any Electrodes Placed In An Alternating Electrostatic Field.

In 1891, just before becoming an American citizen, Nikola Tesla was asked to lecture before the American Institute of Electrical Engineers at the Columbia University in New York. He performed experiments with alternating currents of very high frequency and left an audience of America’s greatest engineers spell-bound as he demonstrated a new theory of light. This lecture would be the first public demonstration of transmitting wireless energy, making Tesla the true father of radio and wireless power.

Throughout his investigations of alternating currents of very high frequency phenomena, Tesla satisfied himself with the conclusion that light bulbs using carbon filaments were inferior, and that an electric field of sufficient intensity could be made to fill a room and light electrodeless vacuum tubes. This was done by connecting two large sheets of zinc to the terminal of the circuit with the sheets being spread apart about fifteen feet away from each other. The sheets served as condensers, and both received the charge of electricity from the wires connecting the sheets to the transformer, creating an electric field between the two. Tesla would then introduce vacuum tubes and place them between the zinc sheets–illuminating the tubes and lighting the room. He waved the vacuum tubes around like a Jedi showcasing the first light sabers, and the tubes continued to glow as long as they remained in the electric field.

He accomplished this by upping the speed of his dynamo, transforming his alternating currents into a continuous flow of static currents. This allowed him to pass a large amount of energy from sheet to sheet, or even through his body, without any harm. To help better explain this, direct currents carry an electric charge along a conductor which travel in one single direction, like a straight line, while the charge in AC alternate back and forth in waveform. Both are extremely dangerous! Static currents, on the other hand, are stationary with no movement. Tesla would speed up his AC so fast that they would transform into a static current, allowing him to create a static field of electricity capable of lighting his wireless bulbs.

The electrical wizard went on to show the absolute harmlessness of his electric system by passing thousands of volts of electricity through his body–lighting light bulbs and shooting sparks out of his finger tips.

These amazing demonstrations would set Tesla apart from the rest of the scientific world, and the inventor would be showered with awards and invitations from all around the world begging him to share his work.

## Method of Lighting Wireless Vacuum Tubes Devoid of Any Electrodes Placed In An Alternating Electrostatic Field.

In 1891, just before becoming an American citizen, Nikola Tesla was asked to lecture before the American Institute of Electrical Engineers at the Columbia University in New York. He performed experiments with alternating currents of very high frequency and left an audience of America’s greatest engineers spell-bound as he demonstrated a new theory of light. This lecture would be the first public demonstration of transmitting wireless energy, making Tesla the true father of radio and wireless power.

Throughout his investigations of alternating currents of very high frequency phenomena, Tesla satisfied himself with the conclusion that light bulbs using carbon filaments were inferior, and that an electric field of sufficient intensity could be made to fill a room and light electrodeless vacuum tubes. This was done by connecting two large sheets of zinc to the terminal of the circuit with the sheets being spread apart about fifteen feet away from each other (as shown above). The sheets served as condensers, and both received the charge of electricity from the wires connecting the sheets to the transformer, creating an electric field between the two. Tesla would then introduce vacuum tubes and place them between the zinc sheets–illuminating the tubes and lighting the room. He waved the vacuum tubes around like a Jedi showcasing the first light sabers, and the tubes continued to glow as long as they remained in the electric field.

He accomplished this by upping the speed of his dynamo, transforming his alternating currents into a continuous flow of static currents, which allowed him to pass a large amount of energy from sheet to sheet, or even through his body, without any harm. To help better explain this, direct currents carry an electric charge along a conductor which travel in one single direction, like a straight line, while the charge in AC alternate back and forth in waveform. Static currents, on the other hand, are stationary with no movement. Tesla would speed up his AC so fast that they would transform into a static current, allowing him to create a static field of electricity capable of lighting his wireless bulbs.

The electrical wizard went on to show the absolute harmlessness of his electric system by passing thousands of volts of electricity through his body–lighting light bulbs and shooting sparks out of his finger tips.

These amazing demonstrations would set Tesla apart from the rest of the scientific world, and the inventor would be showered with awards and invitations from all around the world begging him to share his work.