Category: quantum physics

Regular

drnikolatesla:

🔥Nikola Tesla Roasts the Pop Science World

ASKED to select his choice of the greatest modern and future wonders, the electrical wizard refused to accept the popular notion of what is wonderful. His reply led him into onslaught on the scientists who have abandoned “cause and effect” and who take the position that there are accidents in nature and that anything might happen.

“To the popular mind, any manifestation resulting from any cause will appear wonderful if there is no perceptible connection between cause and effect. For instance, through the means of wireless telephone speech is carried to opposite points of the globe. To the vast majority this must appear miraculous. To the expert who is familiar with the apparatus and sees it in his mind’s eye the result is obvious. It is exactly as though visible means existed to which the impetus is transmitted.

“As I revolve in my mind the thoughts in answer to your question I find the most wonderful thing is the utter aberration of the scientific mind during the last twenty five years. In that time the relativity theory [(Albert Einstein)], the electron theory [(J. J. Thomson)], the quantum theory [(Max Planck, Niels Bohr, Werner Heisenberg, Erwin Schrödinger, Arthur Compton, Paul Dirac, Wolfgang Pauli)], the theory of radioactivity [Marie Curie] and others have been worked out and developed to an amazing degree. And yet probably not less than 90 per cent of what is thought today to be demonstrable scientific truth is nothing but unrealizable dreams.

“What is ‘thought’ in relativity, for example, is not science, but some kind of metaphysics based on abstract mathematical principles and conceptions which will be forever incomprehensible to beings like ourselves whose whole knowledge is derived from a three-dimensional world.

“The idea of the atom being formed of electrons and protons which go whirling round each other like a miniature sun and planets is an invention of the imagination, and has no relation to the real nature of matter.

“Virtually all progress has been achieved by physicists, discoverers and inventors; in short, devotees of the science which [Isaac] Newton and his disciples have been and are propounding.

“Personally, it is only efforts in this direction which have claimed my energies. Similar remarks might be made with respect to other modern developments of thought. Take, for example, the electron theory. Perhaps no other has given rise to so many erroneous ideas and chimerical hopes. Everybody speaks of electrons as something entirely definite and real. Still, the fact is that nobody has isolated it and nobody has measured its charge. Nor does anybody know what it really is.

“In order to explain the observed phenomena, atomic structures have been imagined [(Quantum Mechanics)], none of which can possibly exist. But the worst illusion to which modern thought has led is the idea of ‘indeterminacy’ [(ex. Uncertainty Principle: W. Heisenberg, E. Schrödinger)]. To make this clear, I may remark that heretofore we have in positive science assumed that every effect is the result of a preceding cause.

“As far as I am concerned, I can say that after years of concentrated thought and investigation there is no truth in nature of which I would be more fully convinced. But the new theories of ‘indeterminacy’ state this is not true, that an effect cannot be predicted in advance.

“If two planets collide at certain time and certain place, this is to the student of positive science an inevitable result of preceding interactions between the bodies; and if our knowledge would be adequate, we would be able to foretell the event accurately.

“But in the spirit of the new theories this would simply be an accident. ‘Indeterminacy’ introduces into the world of inert matter a principle which might virtually be compared with the universal illusion of free will.

“Of course, there is no such thing. In years of experimenting I have found that every thought I conceive, every act I perform, is the result of external impressions on my senses.

“It is only because the vast majority of human being are not observant sufficiently that they live in the illusion of perfect choice and freedom in their thoughts and actions. And if this holds true even in the most complex and involved manifestations of human life, it holds true with the same force in all the world of matter.”

–Nikola Tesla

“Great Scientific Discovery Impends.“ The Sunday Star, Washington D.C., May 17, 1931.

Photo

Photo

Regular

itsbeardedcollectorwolfme:

drnikolatesla:

🔥Nikola Tesla Roasts the Pop Science World

ASKED to select his choice of the greatest modern and future wonders, the electrical wizard refused to accept the popular notion of what is wonderful. His reply led him into onslaught on the scientists who have abandoned “cause and effect” and who take the position that there are accidents in nature and that anything might happen.

“To the popular mind, any manifestation resulting from any cause will appear wonderful if there is no perceptible connection between cause and effect. For instance, through the means of wireless telephone speech is carried to opposite points of the globe. To the vast majority this must appear miraculous. To the expert who is familiar with the apparatus and sees it in his mind’s eye the result is obvious. It is exactly as though visible means existed to which the impetus is transmitted.

“As I revolve in my mind the thoughts in answer to your question I find the most wonderful thing is the utter aberration of the scientific mind during the last twenty five years. In that time the relativity theory [Albert Einstein], the electron theory[J. J. Thomson], the quantum theory [Max Planck, Niels Bohr, Werner Heisenberg, Erwin Schrödinger, Arthur Compton, Paul Dirac, Wolfgang Pauli], the theory of radioactivity [Marie Curie] and others have been worked out and developed to an amazing degree. And yet probably not less than 90 per cent of what is thought today to be demonstrable scientific truth is nothing but unrealizable dreams.

“What is ‘thought’ in relativity, for example, is not science, but some kind of metaphysics based on abstract mathematical principles and conceptions which will be forever incomprehensible to beings like ourselves whose whole knowledge is derived from a three-dimensional world.

“The idea of the atom being formed of electrons and protons which go whirling round each other like a miniature sun and planets is an invention of the imagination, and has no relation to the real nature of matter.

“Virtually all progress has been achieved by physicists, discoverers and inventors; in short, devotees of the science which Newton and his disciples have been and are propounding.

“Personally, it is only efforts in this direction which have claimed my energies. Similar remarks might be made with respect to other modern developments of thought. Take, for example, the electron theory. Perhaps no other has given rise to so many erroneous ideas and chimerical hopes. Everybody speaks of electrons as something entirely definite and real. Still, the fact is that nobody has isolated it and nobody has measured its charge. Nor does anybody know what it really is.

“In order to explain the observed phenomena, atomic structures have been imagined [Quantum Mechanics], none of which can possibly exist. But the worst illusion to which modern thought has led is the idea of ‘indeterminacy’ [ex. Uncertainty Principle: W. Heisenberg, E. Schrödinger]. To make this clear, I may remark that heretofore we have in positive science assumed that every effect is the result of a preceding cause.

“As far as I am concerned, I can say that after years of concentrated thought and investigation there is no truth in nature of which I would be more fully convinced. But the new theories of ‘indeterminacy’ state this is not true, that an effect cannot be predicted in advance.

“If two planets collide at certain time and certain place, this is to the student of positive science an inevitable result of preceding interactions between the bodies; and if our knowledge would be adequate, we would be able to foretell the event accurately.

“But in the spirit of the new theories this would simply be an accident. ‘Indeterminacy’ introduces into the world of inert matter a principle which might virtually be compared with the universal illusion of free will.

“Of course, there is no such thing. In years of experimenting I have found that every thought I conceive, every act I perform, is the result of external impressions on my senses.

“It is only because the vast majority of human being are not observant sufficiently that they live in the illusion of perfect choice and freedom in their thoughts and actions. And if this holds true even in the most complex and involved manifestations of human life, it holds true with the same force in all the world of matter.”

–Nikola Tesla

“Great Scientific Discovery Impends.“ The Sunday Star, Washington D.C., May 17, 1931.

God i love Mr. Tesla.

Regular

fruitninja75:

drnikolatesla:

🔥Nikola Tesla Roasts the Pop Science World

ASKED to select his choice of the greatest modern and future wonders, the electrical wizard refused to accept the popular notion of what is wonderful. His reply led him into onslaught on the scientists who have abandoned “cause and effect” and who take the position that there are accidents in nature and that anything might happen.

“To the popular mind, any manifestation resulting from any cause will appear wonderful if there is no perceptible connection between cause and effect. For instance, through the means of wireless telephone speech is carried to opposite points of the globe. To the vast majority this must appear miraculous. To the expert who is familiar with the apparatus and sees it in his mind’s eye the result is obvious. It is exactly as though visible means existed to which the impetus is transmitted.

“As I revolve in my mind the thoughts in answer to your question I find the most wonderful thing is the utter aberration of the scientific mind during the last twenty five years. In that time the relativity theory [Albert Einstein], the electron theory[J. J. Thomson], the quantum theory [Max Planck, Niels Bohr, Werner Heisenberg, Erwin Schrödinger, Arthur Compton, Paul Dirac, Wolfgang Pauli], the theory of radioactivity [Marie Curie] and others have been worked out and developed to an amazing degree. And yet probably not less than 90 per cent of what is thought today to be demonstrable scientific truth is nothing but unrealizable dreams.

“What is ‘thought’ in relativity, for example, is not science, but some kind of metaphysics based on abstract mathematical principles and conceptions which will be forever incomprehensible to beings like ourselves whose whole knowledge is derived from a three-dimensional world.

“The idea of the atom being formed of electrons and protons which go whirling round each other like a miniature sun and planets is an invention of the imagination, and has no relation to the real nature of matter.

“Virtually all progress has been achieved by physicists, discoverers and inventors; in short, devotees of the science which Newton and his disciples have been and are propounding.

“Personally, it is only efforts in this direction which have claimed my energies. Similar remarks might be made with respect to other modern developments of thought. Take, for example, the electron theory. Perhaps no other has given rise to so many erroneous ideas and chimerical hopes. Everybody speaks of electrons as something entirely definite and real. Still, the fact is that nobody has isolated it and nobody has measured its charge. Nor does anybody know what it really is.

“In order to explain the observed phenomena, atomic structures have been imagined [Quantum Mechanics], none of which can possibly exist. But the worst illusion to which modern thought has led is the idea of ‘indeterminacy’ [ex. Uncertainty Principle: W. Heisenberg, E. Schrödinger]. To make this clear, I may remark that heretofore we have in positive science assumed that every effect is the result of a preceding cause.

“As far as I am concerned, I can say that after years of concentrated thought and investigation there is no truth in nature of which I would be more fully convinced. But the new theories of ‘indeterminacy’ state this is not true, that an effect cannot be predicted in advance.

“If two planets collide at certain time and certain place, this is to the student of positive science an inevitable result of preceding interactions between the bodies; and if our knowledge would be adequate, we would be able to foretell the event accurately.

“But in the spirit of the new theories this would simply be an accident. ‘Indeterminacy’ introduces into the world of inert matter a principle which might virtually be compared with the universal illusion of free will.

“Of course, there is no such thing. In years of experimenting I have found that every thought I conceive, every act I perform, is the result of external impressions on my senses.

“It is only because the vast majority of human being are not observant sufficiently that they live in the illusion of perfect choice and freedom in their thoughts and actions. And if this holds true even in the most complex and involved manifestations of human life, it holds true with the same force in all the world of matter.”

–Nikola Tesla

“Great Scientific Discovery Impends.“ The Sunday Star, Washington D.C., May 17, 1931.

(+_+)❤️

Regular

🔥Nikola Tesla Roasts the Pop Science World

ASKED to select his choice of the greatest modern and future wonders, the electrical wizard refused to accept the popular notion of what is wonderful. His reply led him into onslaught on the scientists who have abandoned “cause and effect” and who take the position that there are accidents in nature and that anything might happen.

“To the popular mind, any manifestation resulting from any cause will appear wonderful if there is no perceptible connection between cause and effect. For instance, through the means of wireless telephone speech is carried to opposite points of the globe. To the vast majority this must appear miraculous. To the expert who is familiar with the apparatus and sees it in his mind’s eye the result is obvious. It is exactly as though visible means existed to which the impetus is transmitted.

“As I revolve in my mind the thoughts in answer to your question I find the most wonderful thing is the utter aberration of the scientific mind during the last twenty five years. In that time the relativity theory [Albert Einstein], the electron theory[J. J. Thomson], the quantum theory [Max Planck, Niels Bohr, Werner Heisenberg, Erwin Schrödinger, Arthur Compton, Paul Dirac, Wolfgang Pauli], the theory of radioactivity [Marie Curie] and others have been worked out and developed to an amazing degree. And yet probably not less than 90 per cent of what is thought today to be demonstrable scientific truth is nothing but unrealizable dreams.

“What is ‘thought’ in relativity, for example, is not science, but some kind of metaphysics based on abstract mathematical principles and conceptions which will be forever incomprehensible to beings like ourselves whose whole knowledge is derived from a three-dimensional world.

“The idea of the atom being formed of electrons and protons which go whirling round each other like a miniature sun and planets is an invention of the imagination, and has no relation to the real nature of matter.

“Virtually all progress has been achieved by physicists, discoverers and inventors; in short, devotees of the science which Newton and his disciples have been and are propounding.

“Personally, it is only efforts in this direction which have claimed my energies. Similar remarks might be made with respect to other modern developments of thought. Take, for example, the electron theory. Perhaps no other has given rise to so many erroneous ideas and chimerical hopes. Everybody speaks of electrons as something entirely definite and real. Still, the fact is that nobody has isolated it and nobody has measured its charge. Nor does anybody know what it really is.

“In order to explain the observed phenomena, atomic structures have been imagined [Quantum Mechanics], none of which can possibly exist. But the worst illusion to which modern thought has led is the idea of ‘indeterminacy’ [ex. Uncertainty Principle: W. Heisenberg, E. Schrödinger]. To make this clear, I may remark that heretofore we have in positive science assumed that every effect is the result of a preceding cause.

“As far as I am concerned, I can say that after years of concentrated thought and investigation there is no truth in nature of which I would be more fully convinced. But the new theories of ‘indeterminacy’ state this is not true, that an effect cannot be predicted in advance.

“If two planets collide at certain time and certain place, this is to the student of positive science an inevitable result of preceding interactions between the bodies; and if our knowledge would be adequate, we would be able to foretell the event accurately.

“But in the spirit of the new theories this would simply be an accident. ‘Indeterminacy’ introduces into the world of inert matter a principle which might virtually be compared with the universal illusion of free will.

“Of course, there is no such thing. In years of experimenting I have found that every thought I conceive, every act I perform, is the result of external impressions on my senses.

"It is only because the vast majority of human being are not observant sufficiently that they live in the illusion of perfect choice and freedom in their thoughts and actions. And if this holds true even in the most complex and involved manifestations of human life, it holds true with the same force in all the world of matter.”

–Nikola Tesla

“Great Scientific Discovery Impends.“ The Sunday Star, Washington D.C., May 17, 1931.

Regular

poopdoggydogg:

drnikolatesla:

image

Nikola Tesla and the True Explanation of the Photoelectric Effect

by J. J. J.

The photoelectric effect is a phenomenon which occurs when electromagnetic radiation, such as ultraviolet light, is exposed to certain metallic objects causing the metals to emit electrons from their surface.

In 1905, Albert Einstein gained world fame for supposedly being the first scientist to successfully describe this effect. His theory was that light had little packets (quanta) of energy, or photons, and when exposed to metallic objects at certain frequencies the electrons in these metallic objects would absorb this energy and be broken off from their source. Hence, photoelectrons.

image

This theory led to the wave-particle duality of light since light seemed to act as both a wave and a particle. In 1921, Einstein was awarded the Nobel Prize in Physics for his theoretical and mathematical explanations of this effect. A theory that even today is still accepted as a fact. But According to experiments, research and data collected by Nikola Tesla, Einstein and many other scientists overlooked some key factors in their interpretations of the effect. 

The history of the photoelectric effect goes back to 1887, when Heinrich Hertz first observed electromagnetic waves in experiments, first predicted by James Clerk Maxwell over twenty years before. After this great discovery, Phillip Lenard and many other scientists, including Nikola Tesla, followed Hertz’ work with their own investigations into the matter.

In 1889, after freeing himself from work in Pittsburgh, Tesla returned to New York to begin work on high-frequency apparatuses, wireless transmission, and to develop theories on the relationship between light and electromagnetic radiation. It was right around this time in Tesla’s life when he was starting to gain fame. His alternating current system was finally getting recognition, and he was being asked to give lectures and demonstrations all over the world. On top of this, he was making new discoveries one after another. One very important discovery he made was the discovery of X-rays in 1884, which he called “shadowgraphs.” These mysterious radiations were still very new to him at this time so he wouldn’t realize their importance until a year later when Wilhelm Roentgen made public the same discovery that would win him the first ever Nobel Prize in Physics in 1901. Unfortunately, Tesla’s laboratory would burn down eight months before Roentgen announced his discovery, and the inventor would lose all his laboratory data, notes, plans, photographs, tools, and inventions. So it must be noted that Nikola Tesla was indeed the first scientist to discover X-rays.

After recovering from the fire that destroyed his laboratory March of 1895, a tragedy that set him back a great deal in work and recognition, Nikola Tesla was finally able to resume his work in 1896. With experiments on radiant energy, such as radio waves and X-rays, not only would Nikola Tesla become the first scientist to discovery radioactivity and electrons, but he would be the first scientist to propose that light and other electromagnetic radiations had both particle-like and wave-like properties–predating Henri Becquerel’s radioactivity discovery by a few months, J.J. Thompson’s discovery of the electron by a couple years (both Becquerel and Thomson win Nobel Prizes), and Einstein and other quantum physicist’s light theory by nearly a decade. But Tesla’s views on these effects were much different than other’s.

In experiments with his newly developed high-vacuum tubes and his high-frequency disruptive coil (Tesla Coil), Tesla shot cathode, and other rays at different metals noting the differences in reflection the streams made upon the metals. His experiments indicated six conclusions.

  1. His highly exhausted bulbs emit material streams which, impinging on the metallic surfaces experimented with, are reflected.
  2. These streams are formed of matter in some primary or elementary condition (what we now consider photons/or electrons).
  3. These material streams are probably the same agent which is the cause of the electro-motive tension between metals in close proximity, or actual contact, and they may possibly, to some extent, determine the energy of combination of the metals with oxygen.
  4. Every metal or conductor is more or less a source of such streams.
  5. These streams must be produced by some radiations which exist in the medium.
  6. These streams resembling the cathodic must be emitted by the sun (cosmic radiations) and probably also other sources of radiant energy, such as an arc light or Bunsen burner. 

He considered all conclusions incontrovertible, and with these results, Tesla believed it probable that there is a continuous supply of such radiations in the medium in some form which must come from the sun. Later experiments with the above conclusion would lead Tesla to his discovery of cosmic rays, which he also discovered come from not only our sun, but from every other star outside our solar system. This discovery would be fifteen years before Victor Hess who also won a Nobel Prize for this discovery, and who even today we still recognize as the discoverer of cosmic rays. 

Tesla also suggested that the primary particles composing the radiations are broken into smaller particles by impact against the metals, and are thereby enabled to pass into the air. His analogy was that of shooting a bullet at a wall. When the bullet strikes the wall it is crushed and spatters in all directions radial to where it hit the wall.

image

So according to Tesla, the energy from the flying pieces can only come from that of the bullets, and the results will differ based on the density of the wall, and or the velocity of the bullets. For instance, X-rays are incomparably smaller than cathode rays and have a higher velocity, which is why we are unable to detect x-rays and assume them to be massless photons, while cathode rays are slower so we have been able to label them electrons. This is how Tesla’s radioactivity theory differs from today’s. He realized it was the cosmic rays, and other sources of radiation that cause the radioactivity on earth. We believe the metals, or the elements themselves are producing the radioactivity and emitting electrons, like Einstein’s photoelectric theory suggests, but Tesla’s theory obviously suggests otherwise.

Now to make the above experiments more precise and prove his cosmic radiation theory further, Tesla developed a better method. He used two conductors and connected them to terminals of a condenser which had a considerable electrostatic captivity. One conductor was a metal plate (’P’ in Fig. 1) which was exposed to the Sun’s, and other radiations, and the other being grounded (’p’ in fig. 1) since it is a supply of negative electricity. Now Tesla could derive from a great mass of air, ionized by the radiation disturbance, a current, and store its energy in the condenser (’C’ in Fig. 1).

image

He could also discharge the current through an indicating device. This method did away with the limitations and incertitude of the electroscope and gave Tesla much better results. He filed a patent based off these results titled, “Apparatus of the Utilization of Radiant Energy,” published in 1901. This would obviously be a precursor to solar panels, but still more advanced than today’s panels because it ran off cosmic radiation and not just our sun’s light. 

So in order to get results like Tesla obtained, one would need to reproduce Tesla’s experiments and patents. You can search anywhere online and see demonstrations of the photoelectric effect, but all are using the weakest instruments to demonstrate the effect–like a basic ultraviolet light and an electroscope. The fact that today’s physical science relies on such demonstrations to prove its theories seems to show that science may not be as advanced as we tend to believe.   

Tesla’s work would obviously get ignored by main stream science, but it seems that today’s technology, which seemingly works off Albert Einstein’s theories, are in reality, working off Tesla’s.

“There can be no great harm in a student taking an erroneous view, but when great minds err, the world must dearly pay for their mistakes.”

–Nikola Tesla

“On Light And Other High Frequency Phenomena.” Lecture delivered before the Franklin Institute, Philadelphia, February 1893, and before the National Electric Light Association, St. Louis, March 1893.

image

🐐

Regular

image

Nikola Tesla and the True Explanation of the Photoelectric Effect

by J. J. J.

The photoelectric effect is a phenomenon which occurs when electromagnetic radiation, such as ultraviolet light, is exposed to certain metallic objects causing the metals to emit electrons from their surface.

In 1905, Albert Einstein gained world fame for supposedly being the first scientist to successfully describe this effect. His theory was that light had little packets (quanta) of energy, or photons, and when exposed to metallic objects at certain frequencies the electrons in these metallic objects would absorb this energy and be broken off from their source. Hence, photoelectrons.

image

This theory led to the wave-particle duality of light since light seemed to act as both a wave and a particle. In 1921, Einstein was awarded the Nobel Prize in Physics for his theoretical and mathematical explanations of this effect. A theory that even today is still accepted as a fact. But According to experiments, research and data collected by Nikola Tesla, Einstein and many other scientists overlooked some key factors in their interpretations of the effect. 

The history of the photoelectric effect goes back to 1887, when Heinrich Hertz first observed electromagnetic waves in experiments, first predicted by James Clerk Maxwell over twenty years before. After this great discovery, Phillip Lenard and many other scientists, including Nikola Tesla, followed Hertz’ work with their own investigations into the matter.

In 1889, after freeing himself from work in Pittsburgh, Tesla returned to New York to begin work on high-frequency apparatuses, wireless transmission, and to develop theories on the relationship between light and electromagnetic radiation. It was right around this time in Tesla’s life when he was starting to gain fame. His alternating current system was finally getting recognition, and he was being asked to give lectures and demonstrations all over the world. On top of this, he was making new discoveries one after another. One very important discovery he made was the discovery of X-rays in 1884, which he called “shadowgraphs.” These mysterious radiations were still very new to him at this time so he wouldn’t realize their importance until a year later when Wilhelm Roentgen made public the same discovery that would win him the first ever Nobel Prize in Physics in 1901. Unfortunately, Tesla’s laboratory would burn down eight months before Roentgen announced his discovery, and the inventor would lose all his laboratory data, notes, plans, photographs, tools, and inventions. So it must be noted that Nikola Tesla was indeed the first scientist to discover X-rays.

After recovering from the fire that destroyed his laboratory March of 1895, a tragedy that set him back a great deal in work and recognition, Nikola Tesla was finally able to resume his work in 1896. With experiments on radiant energy, such as radio waves and X-rays, not only would Nikola Tesla become the first scientist to discovery radioactivity and electrons, but he would be the first scientist to propose that light and other electromagnetic radiations had both particle-like and wave-like properties–predating Henri Becquerel’s radioactivity discovery by a few months, J.J. Thompson’s discovery of the electron by a couple years, and Einstein and other quantum physicist’s light theory by nearly a decade. But Tesla’s views on these effects were much different than other’s.

In experiments with his newly developed high-vacuum tubes and his high-frequency disruptive coil (Tesla Coil), Tesla shot cathode, and other rays at different metals noting the differences in reflection the streams made upon the metals. His experiments indicated six conclusions.

  1. His highly exhausted bulbs emit material streams which, impinging on the metallic surfaces experimented with, are reflected.
  2. These streams are formed of matter in some primary or elementary condition (what we now consider photons/or electrons).
  3. These material streams are probably the same agent which is the cause of the electro-motive tension between metals in close proximity, or actual contact, and they may possibly, to some extent, determine the energy of combination of the metals with oxygen.
  4. Every metal or conductor is more or less a source of such streams.
  5. These streams must be produced by some radiations which exist in the medium.
  6. These streams resembling the cathodic must be emitted by the sun (cosmic radiations) and probably also other sources of radiant energy, such as an arc light or Bunsen burner. 

He considered all conclusions incontrovertible, and with these results, Tesla believed it probable that there is a continuous supply of such radiations in the medium in some form which must come from the sun. Later experiments with the above conclusion would lead Tesla to his discovery of cosmic rays, which he also discovered come from not only our sun, but from every other star outside our solar system. This discovery would be fifteen years before Victor Hess who also won a Nobel Prize for this discovery, and who even today we still recognize as the discoverer of cosmic rays. 

Tesla also suggested that the primary particles composing the radiations are broken into smaller particles by impact against the metals, and are thereby enabled to pass into the air. His analogy was that of shooting a bullet at a wall. When the bullet strikes the wall it is crushed and spatters in all directions radial to where it hit the wall.

image

So according to Tesla, the energy from the flying pieces can only come from that of the bullets, and the results will differ based on the density of the wall, and or the velocity of the bullets. For instance, X-rays are incomparably smaller than cathode rays and have a higher velocity, which is why we are unable to detect x-rays and assume them to be massless photons, while cathode rays are slower so we have been able to label them electrons. This is how Tesla’s radioactivity theory differs from today’s. He realized it was the cosmic rays, and other sources of radiation that cause the radioactivity on earth. We believe the metals, or the elements themselves are producing the radioactivity and emitting electrons, like Einstein’s photoelectric theory suggests, but Tesla’s theory obviously suggests otherwise.

Now to make the above experiments more precise and prove his cosmic radiation theory further, Tesla developed a better method. He used two conductors and connected them to terminals of a condenser which had a considerable electrostatic captivity. One conductor was a metal plate (’P’ in Fig. 1) which was exposed to the Sun’s, and other radiations, and the other being grounded (’p’ in fig. 1) since it is a supply of negative electricity. Now Tesla could derive from a great mass of air, ionized by the radiation disturbance, a current, and store its energy in the condenser (’C’ in Fig. 1).

image

He could also discharge the current through an indicating device. This method did away with the limitations and incertitude of the electroscope and gave Tesla much better results. He filed a patent based off these results titled, “Apparatus of the Utilization of Radiant Energy,” published in 1901. This would obviously be a precursor to solar panels, but still more advanced than today’s panels because it ran off cosmic radiation and not just our sun’s light. 

So in order to get results like Tesla obtained, one would need to reproduce Tesla’s experiments and patents. You can search anywhere online and see demonstrations of the photoelectric effect, but all are using the weakest instruments to demonstrate the effect–like a basic ultraviolet light and an electroscope. The fact that today’s physical science relies on such demonstrations to prove its theories seems to show that science may not be as advanced as we tend to believe.   

Tesla’s work would obviously get ignored by main stream science, but it seems that today’s technology, which seemingly works off Albert Einstein’s theories, are in reality, working off Tesla’s.

“There can be no great harm in a student taking an erroneous view, but when great minds err, the world must dearly pay for their mistakes.”

–Nikola Tesla

“On Light And Other High Frequency Phenomena.” Lecture delivered before the Franklin Institute, Philadelphia, February 1893, and before the National Electric Light Association, St. Louis, March 1893.

image

The Hydrogen Atom

The Hydrogen Atom

The conversation turned to the subject of the human brain. “We…

The conversation turned to the subject of the human brain.

We are all automatons,” he reflected, “obeying external influences. We are entirely under the control of agents that beat on our senses from all directions of the outside world. Being merely receivers from the outside, it is a very important question how good the receivers are – some are sensitive and receive accurately. Others are sluggish and their reception is blurred. The individual who is a better machine has so much greater chance of achieving success and happiness. An individual who is an offender of law is a machine in which one or another organ has been deranged, so that the responses are no longer accurate.

There is no chance in nature, although the modern theory of indeterminacy attempts to show scientifically that events are governed by chance. I positively deny that. The causes and effects, however complex, are intimately linked, and the result of all inferences must be inevitably fixed as by a mathematical formula.

I also absolutely deny the existence of individuality. It took me not less than twenty years to develop a faculty to trace every thought or act of mine to an external influence. We are just waves in time and space, changing continuously, and the illusion of individuality is produced through the concatenation of the rapidly succeeding phases of existence. What we define as likeness is merely the result of the symmetrical arrangement of molecules which compose our body.”

“How about the soul – the spirit?” he was asked.

Ah,” he exclaimed, “but there is no soul or spirit. These are merely expressions of the functions of the body. These life functions cease with death and so do soul and spirit.

What humanity needs is ideals. Idealism is the force that will free us from material fetters.”

–Nikola Tesla.

“Tesla Seeks to Send Power to Planets.” New York Times, July 11, 1931.

drnikolatesla: The History of the Photoelectric Effect In…

drnikolatesla:

The History of the Photoelectric Effect

In 1905, Albert Einstein gained world fame for supposedly being the first to propose that light has a nature of both a wave and a particle. This theory lead to the development of “photons,” or photo-electrons, which describe light with a wave-particle duality. In 1921, Einstein was awarded the Nobel Prize in Physics for his theoretical physics and his explanation of the photoelectric effect. A theory that even today is still accepted as a certainty.

In 1887, Heinrich Hertz discovered the photoelectric effect, but it is a fact that Nikola Tesla was the first to explain the effect. Einstein was a very intelligent scientist, but he lacked wisdom. Unlike Einstein, Nikola Tesla wasn’t just a theoretical physicist who based all his theories off other scientists’ work (like James Clerk Maxwell and Heinrich Hertz), but was an experimental physicist as well, who based all his theories off experimental research and data from which he himself conducted and recorded.

In 1896, with experiments with radiant energy and high-vacuum tubes, Nikola Tesla was the first to publicize that light had both particle-like and wave-like properties–predating Einstein and other quantum physicists by nine years. With his high-vacuum tubes, or cathode ray tubes, Tesla shot cathode rays at different metals noting the differences in reflection the streams made upon the metals. Initially, he noticed the streams, being shot at the metals like bullets, broke into smaller particles, and or, vibrations of extremely high frequencies (technically, this would be the first demonstration of breaking electrons into subatomic particles), but upon further investigation he proved that they were indeed just waves. This lead to his conclusion that light is merely a transverse, longitudinal disturbance in the ether, involving alternate compressions and rarefactions, or in his words, “light can be nothing else than a sound wave in the ether.” Tesla would go on to file a patent based off these experiments titled, “Apparatus of the Utilization of Radiant Energy,” published in 1901.

Tesla’s conclusions would obviously get ignored by main stream science, but it seems that today’s technology, which seemingly works off Albert Einstein’s theories, are in reality, working off Tesla’s.

Ahead of his time!