Category: photoelectric effect

poopdoggydogg:

Tesla was so far ahead of his time!

drnikolatesla:

“Nature has provided an abundant supply of energy in various forms which might be utilized if proper means and ways can be devised. The sun’s rays falling upon the earth’s surface represent a quantity of energy so enormous that but a small part of it could meet all our demands. By normal incidence the rate is mechanically equivalent to about 95 foot pounds per square foot per second, or nearly 7,300 horse power per acre of ground. In the equatorial regions the mean annual rate is approximately 2,326 and in our latitudes 1,737 horse power for the same area. By using the heat to generate steam and operating a turbine under high vacuum probably 200 horse power per acre could be obtained as net useful power in these parts. This would be very satisfactory were it not for the cost of the apparatus which is greatly increased by the necessity of employing a storage plant sufficient to carry the load almost three-quarters of the time.

"The energy of light rays, constituting about 10% of the total radiation, might be captured by a cold and highly efficient process in photo-electric cells which may become, on this account, of practical importance in the future. Some progress in this direction has already been achieved. But for the time being it appears from a careful estimate, that solar power derived from radiant heat and light, even in the tropics, offers small opportunities for practical exploitation. The existing handicaps will be largely removed when the wireless method of power transmission comes into use. Many plants situated in hot zones, could then be operatively connected in a great super-power system to supply energy, at a constant rate, to all points of the globe.

"The sun emits, however, a peculiar radiation of great energy which I discovered in 1899. Two years previous I had been engaged in an investigation of radio-activity which led me to the conclusion that the phenomena observed were not due to molecular forces residing in the substances themselves, but were caused by a cosmic ray of extraordinary penetrativeness. That it emanated from the sun was an obvious inference, for although many heavenly bodies are undoubtedly possessed of a similar property, the total radiation which the earth receives from all the suns and stars of the universe is only a little more than one-quarter of one percent of that it gets from our luminary. Hence, to look for the cosmic ray elsewhere is much like chercher le midi dans les environs de quatorze heures [looking for lunch in the vicinity of fourteen o’clock]. My theory was strikingly confirmed when I found that the sun does, indeed, emit a ray marvelous in the inconceivable minuteness of its particles and transcending speed of their motion, vastly exceeding that of light. This ray, by impinging against the cosmic dust generates a secondary radiation, relatively very feeble but fairly penetrative, the intensity of which is, of course, almost the same in all directions. German scientists who investigated it in 1901 assumed that it came from the stars and since that time the fantastic idea has been advanced that it has its origin in new matter constantly created in interstellar space!! We may be sure that there is no place in the universe where such a flagrant violation of natural laws, as the flowing of water uphill, is possible. Perhaps, some time in the future when our means of investigation will be immeasurably improved, we may find ways of capturing this force and utilizing it for the attainment of results beyond our present imagining.”

-Nikola Tesla

“OUR FUTURE MOTIVE POWER.” Everyday Science and Mechanics, December 1931.

“Nature has provided an abundant supply of energy in various forms which might be utilized if proper means and ways can be devised. The sun’s rays falling upon the earth’s surface represent a quantity of energy so enormous that but a small part of it could meet all our demands. By normal incidence the rate is mechanically equivalent to about 95 foot pounds per square foot per second, or nearly 7,300 horse power per acre of ground. In the equatorial regions the mean annual rate is approximately 2,326 and in our latitudes 1,737 horse power for the same area. By using the heat to generate steam and operating a turbine under high vacuum probably 200 horse power per acre could be obtained as net useful power in these parts. This would be very satisfactory were it not for the cost of the apparatus which is greatly increased by the necessity of employing a storage plant sufficient to carry the load almost three-quarters of the time.

"The energy of light rays, constituting about 10% of the total radiation, might be captured by a cold and highly efficient process in photo-electric cells which may become, on this account, of practical importance in the future. Some progress in this direction has already been achieved. But for the time being it appears from a careful estimate, that solar power derived from radiant heat and light, even in the tropics, offers small opportunities for practical exploitation. The existing handicaps will be largely removed when the wireless method of power transmission comes into use. Many plants situated in hot zones, could then be operatively connected in a great super-power system to supply energy, at a constant rate, to all points of the globe.

"The sun emits, however, a peculiar radiation of great energy which I discovered in 1899. Two years previous I had been engaged in an investigation of radio-activity which led me to the conclusion that the phenomena observed were not due to molecular forces residing in the substances themselves, but were caused by a cosmic ray of extraordinary penetrativeness. That it emanated from the sun was an obvious inference, for although many heavenly bodies are undoubtedly possessed of a similar property, the total radiation which the earth receives from all the suns and stars of the universe is only a little more than one-quarter of one percent of that it gets from our luminary. Hence, to look for the cosmic ray elsewhere is much like chercher le midi dans les environs de quatorze heures [looking for lunch in the vicinity of fourteen o’clock]. My theory was strikingly confirmed when I found that the sun does, indeed, emit a ray marvelous in the inconceivable minuteness of its particles and transcending speed of their motion, vastly exceeding that of light. This ray, by impinging against the cosmic dust generates a secondary radiation, relatively very feeble but fairly penetrative, the intensity of which is, of course, almost the same in all directions. German scientists who investigated it in 1901 assumed that it came from the stars and since that time the fantastic idea has been advanced that it has its origin in new matter constantly created in interstellar space!! We may be sure that there is no place in the universe where such a flagrant violation of natural laws, as the flowing of water uphill, is possible. Perhaps, some time in the future when our means of investigation will be immeasurably improved, we may find ways of capturing this force and utilizing it for the attainment of results beyond our present imagining.”

-Nikola Tesla

“OUR FUTURE MOTIVE POWER.” Everyday Science and Mechanics, December 1931.

july-deras:

drnikolatesla:

Nikola Tesla and the True Explanation of the Photoelectric Effect

by J. J. J.

The photoelectric effect is a phenomenon which occurs when electromagnetic radiation, such as ultraviolet light, is exposed to certain metallic objects causing the metals to emit electrons from their surface.

In 1905, Albert Einstein gained world fame for supposedly being the first scientist to successfully describe this effect. His theory was that light had little packets (quanta) of energy, or photons, and when exposed to metallic objects at certain frequencies the electrons in these metallic objects would absorb this energy and be broken off from their source. Hence, photoelectrons.

This theory led to the wave-particle duality of light since light seemed to act as both a wave and a particle. In 1921, Einstein was awarded the Nobel Prize in Physics for his theoretical and mathematical explanations of this effect. A theory that even today is still accepted as a fact. But According to experiments, research and data collected by Nikola Tesla, Einstein and many other scientists overlooked some key factors in their interpretations of the effect. 

The history of the photoelectric effect goes back to 1887, when Heinrich Hertz first observed electromagnetic waves in experiments, first predicted by James Clerk Maxwell over twenty years before. After this great discovery, Phillip Lenard and many other scientists, including Nikola Tesla, followed Hertz’ work with their own investigations into the matter.

In 1889, after freeing himself from work in Pittsburgh, Tesla returned to New York to begin work on high-frequency apparatuses, wireless transmission, and to develop theories on the relationship between light and electromagnetic radiation. It was right around this time in Tesla’s life when he was starting to gain fame. His alternating current system was finally getting recognition, and he was being asked to give lectures and demonstrations all over the world. On top of this, he was making new discoveries one after another. One very important discovery he made was the discovery of X-rays in 1884, which he called “shadowgraphs.” These mysterious radiations were still very new to him at this time so he wouldn’t realize their importance until a year later when Wilhelm Roentgen made public the same discovery that would win him the first ever Nobel Prize in Physics in 1901. Unfortunately, Tesla’s laboratory would burn down eight months before Roentgen announced his discovery, and the inventor would lose all his laboratory data, notes, plans, photographs, tools, and inventions. So it must be noted that Nikola Tesla was indeed the first scientist to discover X-rays.

After recovering from the fire that destroyed his laboratory March of 1895, a tragedy that set him back a great deal in work and recognition, Nikola Tesla was finally able to resume his work in 1896. With experiments on radiant energy, such as radio waves and X-rays, not only would Nikola Tesla become the first scientist to discovery radioactivity and electrons, but he would be the first scientist to propose that light and other electromagnetic radiations had both particle-like and wave-like properties–predating Henri Becquerel’s radioactivity discovery by a few months, J.J. Thompson’s discovery of the electron by a couple years (both Becquerel and Thomson won Nobel Prizes), and Einstein and other quantum physicist’s light theory by nearly a decade. But Tesla’s views on these effects were much different than other’s.

In experiments with his newly developed high-vacuum tubes and his high-frequency disruptive coil (Tesla Coil), Tesla shot cathode, and other rays at different metals noting the differences in reflection the streams made upon the metals. His experiments indicated six conclusions.

  1. His highly exhausted bulbs emit material streams which, impinging on the metallic surfaces experimented with, are reflected.
  2. These streams are formed of matter in some primary or elementary condition (what we now consider photons/or electrons).
  3. These material streams are probably the same agent which is the cause of the electro-motive tension between metals in close proximity, or actual contact, and they may possibly, to some extent, determine the energy of combination of the metals with oxygen.
  4. Every metal or conductor is more or less a source of such streams.
  5. These streams must be produced by some radiations which exist in the medium.
  6. These streams resembling the cathodic must be emitted by the sun (cosmic radiations) and probably also other sources of radiant energy, such as an arc light or Bunsen burner. 

He considered all conclusions incontrovertible, and with these results, Tesla believed it probable that there is a continuous supply of such radiations in the medium in some form which must come from the sun. Later experiments with the above conclusion would lead Tesla to his discovery of cosmic rays, which he also discovered come from not only our sun, but from every other star outside our solar system. This discovery would be fifteen years before Victor Hess, who also won a Nobel Prize for this discovery, who even today we still recognize as the discoverer of cosmic rays. 

Tesla also suggested that the primary particles composing the cosmic rays are broken into smaller particles by impact against certain metals, and are thereby enabled to pass into the air. His analogy was that of shooting a bullet at a wall. When the bullet strikes the wall it is crushed and spatters in all directions radial to where it hit the wall.

So according to Tesla, the energy from the flying pieces can only come from that of the bullets, and the results will differ based on the density of the wall, and or the velocity of the bullets. For instance, X-rays are incomparably smaller than cathode rays and have a higher velocity, which is why we are unable to detect X-rays and assume them to be massless photons, while cathode rays are slower so we have been able to label them electrons. This is how Tesla’s radioactivity theory differs from today’s. He realized it was the cosmic rays, and other sources of radiation that cause the radioactivity on earth. We believe the metals, or the elements themselves are producing the radioactivity and emitting electrons, like Einstein’s photoelectric theory suggests, but Tesla’s theory obviously suggests otherwise.

Now to make the above experiments more precise and prove his cosmic radiation theory further, Tesla developed a better method. He used two conductors and connected them to terminals of a condenser which had a considerable electrostatic captivity. One conductor was a metal plate (’P’ in Fig. 1) which was exposed to the Sun’s, and other radiations, and the other being grounded (’p’ in fig. 1) since it is a supply of negative electricity. Now Tesla could derive from a great mass of air, ionized by the radiation disturbance, a current, and store its energy in the condenser (’C’ in Fig. 1).

He could also discharge the current through an indicating device. This method did away with the limitations and incertitude of the electroscope and gave Tesla much better results. He filed a patent based off these results titled, “Apparatus of the Utilization of Radiant Energy,” published in 1901. This would obviously be a precursor to solar panels, but still more advanced than today’s panels because it ran off cosmic radiation and not just our sun’s light. 

So in order to get results like Tesla obtained, one would need to reproduce Tesla’s experiments and patents. You can search anywhere online and see demonstrations of the photoelectric effect, but all are using the weakest instruments to demonstrate the effect–like a basic ultraviolet light and an electroscope. The fact that today’s physical science relies on such demonstrations to prove its theories seems to show that science may not be as advanced as we tend to believe.   

Tesla’s work would obviously get ignored by main stream science, but it seems that today’s technology, which seemingly works off Albert Einstein’s theories, are in reality, working off Tesla’s.

“There can be no great harm in a student taking an erroneous view, but when great minds err, the world must dearly pay for their mistakes.”

–Nikola Tesla

“On Light And Other High Frequency Phenomena.” Lecture delivered before the Franklin Institute, Philadelphia, February 1893, and before the National Electric Light Association, St. Louis, March 1893.

The best!!!. 💚💛❤

drnikolatesla:

Nikola Tesla and the True Explanation of the Photoelectric Effect

by J. J. J.

The photoelectric effect is a phenomenon which occurs when electromagnetic radiation, such as ultraviolet light, is exposed to certain metallic objects causing the metals to emit electrons from their surface.

In 1905, Albert Einstein gained world fame for supposedly being the first scientist to successfully describe this effect. His theory was that light had little packets (quanta) of energy, or photons, and when exposed to metallic objects at certain frequencies the electrons in these metallic objects would absorb this energy and be broken off from their source. Hence, photoelectrons.

This theory led to the wave-particle duality of light since light seemed to act as both a wave and a particle. In 1921, Einstein was awarded the Nobel Prize in Physics for his theoretical and mathematical explanations of this effect. A theory that even today is still accepted as a fact. But According to experiments, research and data collected by Nikola Tesla, Einstein and many other scientists overlooked some key factors in their interpretations of the effect. 

The history of the photoelectric effect goes back to 1887, when Heinrich Hertz first observed electromagnetic waves in experiments, first predicted by James Clerk Maxwell over twenty years before. After this great discovery, Phillip Lenard and many other scientists, including Nikola Tesla, followed Hertz’ work with their own investigations into the matter.

In 1889, after freeing himself from work in Pittsburgh, Tesla returned to New York to begin work on high-frequency apparatuses, wireless transmission, and to develop theories on the relationship between light and electromagnetic radiation. It was right around this time in Tesla’s life when he was starting to gain fame. His alternating current system was finally getting recognition, and he was being asked to give lectures and demonstrations all over the world. On top of this, he was making new discoveries one after another. One very important discovery he made was the discovery of X-rays in 1884, which he called “shadowgraphs.” These mysterious radiations were still very new to him at this time so he wouldn’t realize their importance until a year later when Wilhelm Roentgen made public the same discovery that would win him the first ever Nobel Prize in Physics in 1901. Unfortunately, Tesla’s laboratory would burn down eight months before Roentgen announced his discovery, and the inventor would lose all his laboratory data, notes, plans, photographs, tools, and inventions. So it must be noted that Nikola Tesla was indeed the first scientist to discover X-rays.

After recovering from the fire that destroyed his laboratory March of 1895, a tragedy that set him back a great deal in work and recognition, Nikola Tesla was finally able to resume his work in 1896. With experiments on radiant energy, such as radio waves and X-rays, not only would Nikola Tesla become the first scientist to discovery radioactivity and electrons, but he would be the first scientist to propose that light and other electromagnetic radiations had both particle-like and wave-like properties–predating Henri Becquerel’s radioactivity discovery by a few months, J.J. Thompson’s discovery of the electron by a couple years (both Becquerel and Thomson won Nobel Prizes), and Einstein and other quantum physicist’s light theory by nearly a decade. But Tesla’s views on these effects were much different than other’s.

In experiments with his newly developed high-vacuum tubes and his high-frequency disruptive coil (Tesla Coil), Tesla shot cathode, and other rays at different metals noting the differences in reflection the streams made upon the metals. His experiments indicated six conclusions.

  1. His highly exhausted bulbs emit material streams which, impinging on the metallic surfaces experimented with, are reflected.
  2. These streams are formed of matter in some primary or elementary condition (what we now consider photons/or electrons).
  3. These material streams are probably the same agent which is the cause of the electro-motive tension between metals in close proximity, or actual contact, and they may possibly, to some extent, determine the energy of combination of the metals with oxygen.
  4. Every metal or conductor is more or less a source of such streams.
  5. These streams must be produced by some radiations which exist in the medium.
  6. These streams resembling the cathodic must be emitted by the sun (cosmic radiations) and probably also other sources of radiant energy, such as an arc light or Bunsen burner. 

He considered all conclusions incontrovertible, and with these results, Tesla believed it probable that there is a continuous supply of such radiations in the medium in some form which must come from the sun. Later experiments with the above conclusion would lead Tesla to his discovery of cosmic rays, which he also discovered come from not only our sun, but from every other star outside our solar system. This discovery would be fifteen years before Victor Hess, who also won a Nobel Prize for this discovery, who even today we still recognize as the discoverer of cosmic rays. 

Tesla also suggested that the primary particles composing the cosmic rays are broken into smaller particles by impact against certain metals, and are thereby enabled to pass into the air. His analogy was that of shooting a bullet at a wall. When the bullet strikes the wall it is crushed and spatters in all directions radial to where it hit the wall.

So according to Tesla, the energy from the flying pieces can only come from that of the bullets, and the results will differ based on the density of the wall, and or the velocity of the bullets. For instance, X-rays are incomparably smaller than cathode rays and have a higher velocity, which is why we are unable to detect X-rays and assume them to be massless photons, while cathode rays are slower so we have been able to label them electrons. This is how Tesla’s radioactivity theory differs from today’s. He realized it was the cosmic rays, and other sources of radiation that cause the radioactivity on earth. We believe the metals, or the elements themselves are producing the radioactivity and emitting electrons, like Einstein’s photoelectric theory suggests, but Tesla’s theory obviously suggests otherwise.

Now to make the above experiments more precise and prove his cosmic radiation theory further, Tesla developed a better method. He used two conductors and connected them to terminals of a condenser which had a considerable electrostatic captivity. One conductor was a metal plate (’P’ in Fig. 1) which was exposed to the Sun’s, and other radiations, and the other being grounded (’p’ in fig. 1) since it is a supply of negative electricity. Now Tesla could derive from a great mass of air, ionized by the radiation disturbance, a current, and store its energy in the condenser (’C’ in Fig. 1).

He could also discharge the current through an indicating device. This method did away with the limitations and incertitude of the electroscope and gave Tesla much better results. He filed a patent based off these results titled, “Apparatus of the Utilization of Radiant Energy,” published in 1901. This would obviously be a precursor to solar panels, but still more advanced than today’s panels because it ran off cosmic radiation and not just our sun’s light. 

So in order to get results like Tesla obtained, one would need to reproduce Tesla’s experiments and patents. You can search anywhere online and see demonstrations of the photoelectric effect, but all are using the weakest instruments to demonstrate the effect–like a basic ultraviolet light and an electroscope. The fact that today’s physical science relies on such demonstrations to prove its theories seems to show that science may not be as advanced as we tend to believe.   

Tesla’s work would obviously get ignored by main stream science, but it seems that today’s technology, which seemingly works off Albert Einstein’s theories, are in reality, working off Tesla’s.

“There can be no great harm in a student taking an erroneous view, but when great minds err, the world must dearly pay for their mistakes.”

–Nikola Tesla

“On Light And Other High Frequency Phenomena.” Lecture delivered before the Franklin Institute, Philadelphia, February 1893, and before the National Electric Light Association, St. Louis, March 1893.

herbertspencerquotes:

drnikolatesla:

image

Nikola Tesla and the True Explanation of the Photoelectric Effect

by J. J. J.

The photoelectric effect is a phenomenon which occurs when electromagnetic radiation, such as ultraviolet light, is exposed to certain metallic objects causing the metals to emit electrons from their surface.

In 1905, Albert Einstein gained world fame for supposedly being the first scientist to successfully describe this effect. His theory was that light had little packets (quanta) of energy, or photons, and when exposed to metallic objects at certain frequencies the electrons in these metallic objects would absorb this energy and be broken off from their source. Hence, photoelectrons.

image

This theory led to the wave-particle duality of light since light seemed to act as both a wave and a particle. In 1921, Einstein was awarded the Nobel Prize in Physics for his theoretical and mathematical explanations of this effect. A theory that even today is still accepted as a fact. But According to experiments, research and data collected by Nikola Tesla, Einstein and many other scientists overlooked some key factors in their interpretations of the effect. 

The history of the photoelectric effect goes back to 1887, when Heinrich Hertz first observed electromagnetic waves in experiments, first predicted by James Clerk Maxwell over twenty years before. After this great discovery, Phillip Lenard and many other scientists, including Nikola Tesla, followed Hertz’ work with their own investigations into the matter.

In 1889, after freeing himself from work in Pittsburgh, Tesla returned to New York to begin work on high-frequency apparatuses, wireless transmission, and to develop theories on the relationship between light and electromagnetic radiation. It was right around this time in Tesla’s life when he was starting to gain fame. His alternating current system was finally getting recognition, and he was being asked to give lectures and demonstrations all over the world. On top of this, he was making new discoveries one after another. One very important discovery he made was the discovery of X-rays in 1884, which he called “shadowgraphs.” These mysterious radiations were still very new to him at this time so he wouldn’t realize their importance until a year later when Wilhelm Roentgen made public the same discovery that would win him the first ever Nobel Prize in Physics in 1901. Unfortunately, Tesla’s laboratory would burn down eight months before Roentgen announced his discovery, and the inventor would lose all his laboratory data, notes, plans, photographs, tools, and inventions. So it must be noted that Nikola Tesla was indeed the first scientist to discover X-rays.

After recovering from the fire that destroyed his laboratory March of 1895, a tragedy that set him back a great deal in work and recognition, Nikola Tesla was finally able to resume his work in 1896. With experiments on radiant energy, such as radio waves and X-rays, not only would Nikola Tesla become the first scientist to discovery radioactivity and electrons, but he would be the first scientist to propose that light and other electromagnetic radiations had both particle-like and wave-like properties–predating Henri Becquerel’s radioactivity discovery by a few months, J.J. Thompson’s discovery of the electron by a couple years (both Becquerel and Thomson won Nobel Prizes), and Einstein and other quantum physicist’s light theory by nearly a decade. But Tesla’s views on these effects were much different than other’s.

In experiments with his newly developed high-vacuum tubes and his high-frequency disruptive coil (Tesla Coil), Tesla shot cathode, and other rays at different metals noting the differences in reflection the streams made upon the metals. His experiments indicated six conclusions.

  1. His highly exhausted bulbs emit material streams which, impinging on the metallic surfaces experimented with, are reflected.
  2. These streams are formed of matter in some primary or elementary condition (what we now consider photons/or electrons).
  3. These material streams are probably the same agent which is the cause of the electro-motive tension between metals in close proximity, or actual contact, and they may possibly, to some extent, determine the energy of combination of the metals with oxygen.
  4. Every metal or conductor is more or less a source of such streams.
  5. These streams must be produced by some radiations which exist in the medium.
  6. These streams resembling the cathodic must be emitted by the sun (cosmic radiations) and probably also other sources of radiant energy, such as an arc light or Bunsen burner. 

He considered all conclusions incontrovertible, and with these results, Tesla believed it probable that there is a continuous supply of such radiations in the medium in some form which must come from the sun. Later experiments with the above conclusion would lead Tesla to his discovery of cosmic rays, which he also discovered come from not only our sun, but from every other star outside our solar system. This discovery would be fifteen years before Victor Hess who also won a Nobel Prize for this discovery, and who even today we still recognize as the discoverer of cosmic rays. 

Tesla also suggested that the primary particles composing the radiations are broken into smaller particles by impact against the metals, and are thereby enabled to pass into the air. His analogy was that of shooting a bullet at a wall. When the bullet strikes the wall it is crushed and spatters in all directions radial to where it hit the wall.

image

So according to Tesla, the energy from the flying pieces can only come from that of the bullets, and the results will differ based on the density of the wall, and or the velocity of the bullets. For instance, X-rays are incomparably smaller than cathode rays and have a higher velocity, which is why we are unable to detect x-rays and assume them to be massless photons, while cathode rays are slower so we have been able to label them electrons. This is how Tesla’s radioactivity theory differs from today’s. He realized it was the cosmic rays, and other sources of radiation that cause the radioactivity on earth. We believe the metals, or the elements themselves are producing the radioactivity and emitting electrons, like Einstein’s photoelectric theory suggests, but Tesla’s theory obviously suggests otherwise.

Now to make the above experiments more precise and prove his cosmic radiation theory further, Tesla developed a better method. He used two conductors and connected them to terminals of a condenser which had a considerable electrostatic captivity. One conductor was a metal plate (’P’ in Fig. 1) which was exposed to the Sun’s, and other radiations, and the other being grounded (’p’ in fig. 1) since it is a supply of negative electricity. Now Tesla could derive from a great mass of air, ionized by the radiation disturbance, a current, and store its energy in the condenser (’C’ in Fig. 1).

image

He could also discharge the current through an indicating device. This method did away with the limitations and incertitude of the electroscope and gave Tesla much better results. He filed a patent based off these results titled, “Apparatus of the Utilization of Radiant Energy,” published in 1901. This would obviously be a precursor to solar panels, but still more advanced than today’s panels because it ran off cosmic radiation and not just our sun’s light. 

So in order to get results like Tesla obtained, one would need to reproduce Tesla’s experiments and patents. You can search anywhere online and see demonstrations of the photoelectric effect, but all are using the weakest instruments to demonstrate the effect–like a basic ultraviolet light and an electroscope. The fact that today’s physical science relies on such demonstrations to prove its theories seems to show that science may not be as advanced as we tend to believe.   

Tesla’s work would obviously get ignored by main stream science, but it seems that today’s technology, which seemingly works off Albert Einstein’s theories, are in reality, working off Tesla’s.

“There can be no great harm in a student taking an erroneous view, but when great minds err, the world must dearly pay for their mistakes.”

–Nikola Tesla

“On Light And Other High Frequency Phenomena.” Lecture delivered before the Franklin Institute, Philadelphia, February 1893, and before the National Electric Light Association, St. Louis, March 1893.

image

This shit is crazy!

poopdoggydogg:

drnikolatesla:

image

Nikola Tesla and the True Explanation of the Photoelectric Effect

by J. J. J.

The photoelectric effect is a phenomenon which occurs when electromagnetic radiation, such as ultraviolet light, is exposed to certain metallic objects causing the metals to emit electrons from their surface.

In 1905, Albert Einstein gained world fame for supposedly being the first scientist to successfully describe this effect. His theory was that light had little packets (quanta) of energy, or photons, and when exposed to metallic objects at certain frequencies the electrons in these metallic objects would absorb this energy and be broken off from their source. Hence, photoelectrons.

image

This theory led to the wave-particle duality of light since light seemed to act as both a wave and a particle. In 1921, Einstein was awarded the Nobel Prize in Physics for his theoretical and mathematical explanations of this effect. A theory that even today is still accepted as a fact. But According to experiments, research and data collected by Nikola Tesla, Einstein and many other scientists overlooked some key factors in their interpretations of the effect. 

The history of the photoelectric effect goes back to 1887, when Heinrich Hertz first observed electromagnetic waves in experiments, first predicted by James Clerk Maxwell over twenty years before. After this great discovery, Phillip Lenard and many other scientists, including Nikola Tesla, followed Hertz’ work with their own investigations into the matter.

In 1889, after freeing himself from work in Pittsburgh, Tesla returned to New York to begin work on high-frequency apparatuses, wireless transmission, and to develop theories on the relationship between light and electromagnetic radiation. It was right around this time in Tesla’s life when he was starting to gain fame. His alternating current system was finally getting recognition, and he was being asked to give lectures and demonstrations all over the world. On top of this, he was making new discoveries one after another. One very important discovery he made was the discovery of X-rays in 1884, which he called “shadowgraphs.” These mysterious radiations were still very new to him at this time so he wouldn’t realize their importance until a year later when Wilhelm Roentgen made public the same discovery that would win him the first ever Nobel Prize in Physics in 1901. Unfortunately, Tesla’s laboratory would burn down eight months before Roentgen announced his discovery, and the inventor would lose all his laboratory data, notes, plans, photographs, tools, and inventions. So it must be noted that Nikola Tesla was indeed the first scientist to discover X-rays.

After recovering from the fire that destroyed his laboratory March of 1895, a tragedy that set him back a great deal in work and recognition, Nikola Tesla was finally able to resume his work in 1896. With experiments on radiant energy, such as radio waves and X-rays, not only would Nikola Tesla become the first scientist to discovery radioactivity and electrons, but he would be the first scientist to propose that light and other electromagnetic radiations had both particle-like and wave-like properties–predating Henri Becquerel’s radioactivity discovery by a few months, J.J. Thompson’s discovery of the electron by a couple years (both Becquerel and Thomson win Nobel Prizes), and Einstein and other quantum physicist’s light theory by nearly a decade. But Tesla’s views on these effects were much different than other’s.

In experiments with his newly developed high-vacuum tubes and his high-frequency disruptive coil (Tesla Coil), Tesla shot cathode, and other rays at different metals noting the differences in reflection the streams made upon the metals. His experiments indicated six conclusions.

  1. His highly exhausted bulbs emit material streams which, impinging on the metallic surfaces experimented with, are reflected.
  2. These streams are formed of matter in some primary or elementary condition (what we now consider photons/or electrons).
  3. These material streams are probably the same agent which is the cause of the electro-motive tension between metals in close proximity, or actual contact, and they may possibly, to some extent, determine the energy of combination of the metals with oxygen.
  4. Every metal or conductor is more or less a source of such streams.
  5. These streams must be produced by some radiations which exist in the medium.
  6. These streams resembling the cathodic must be emitted by the sun (cosmic radiations) and probably also other sources of radiant energy, such as an arc light or Bunsen burner. 

He considered all conclusions incontrovertible, and with these results, Tesla believed it probable that there is a continuous supply of such radiations in the medium in some form which must come from the sun. Later experiments with the above conclusion would lead Tesla to his discovery of cosmic rays, which he also discovered come from not only our sun, but from every other star outside our solar system. This discovery would be fifteen years before Victor Hess who also won a Nobel Prize for this discovery, and who even today we still recognize as the discoverer of cosmic rays. 

Tesla also suggested that the primary particles composing the radiations are broken into smaller particles by impact against the metals, and are thereby enabled to pass into the air. His analogy was that of shooting a bullet at a wall. When the bullet strikes the wall it is crushed and spatters in all directions radial to where it hit the wall.

image

So according to Tesla, the energy from the flying pieces can only come from that of the bullets, and the results will differ based on the density of the wall, and or the velocity of the bullets. For instance, X-rays are incomparably smaller than cathode rays and have a higher velocity, which is why we are unable to detect x-rays and assume them to be massless photons, while cathode rays are slower so we have been able to label them electrons. This is how Tesla’s radioactivity theory differs from today’s. He realized it was the cosmic rays, and other sources of radiation that cause the radioactivity on earth. We believe the metals, or the elements themselves are producing the radioactivity and emitting electrons, like Einstein’s photoelectric theory suggests, but Tesla’s theory obviously suggests otherwise.

Now to make the above experiments more precise and prove his cosmic radiation theory further, Tesla developed a better method. He used two conductors and connected them to terminals of a condenser which had a considerable electrostatic captivity. One conductor was a metal plate (’P’ in Fig. 1) which was exposed to the Sun’s, and other radiations, and the other being grounded (’p’ in fig. 1) since it is a supply of negative electricity. Now Tesla could derive from a great mass of air, ionized by the radiation disturbance, a current, and store its energy in the condenser (’C’ in Fig. 1).

image

He could also discharge the current through an indicating device. This method did away with the limitations and incertitude of the electroscope and gave Tesla much better results. He filed a patent based off these results titled, “Apparatus of the Utilization of Radiant Energy,” published in 1901. This would obviously be a precursor to solar panels, but still more advanced than today’s panels because it ran off cosmic radiation and not just our sun’s light. 

So in order to get results like Tesla obtained, one would need to reproduce Tesla’s experiments and patents. You can search anywhere online and see demonstrations of the photoelectric effect, but all are using the weakest instruments to demonstrate the effect–like a basic ultraviolet light and an electroscope. The fact that today’s physical science relies on such demonstrations to prove its theories seems to show that science may not be as advanced as we tend to believe.   

Tesla’s work would obviously get ignored by main stream science, but it seems that today’s technology, which seemingly works off Albert Einstein’s theories, are in reality, working off Tesla’s.

“There can be no great harm in a student taking an erroneous view, but when great minds err, the world must dearly pay for their mistakes.”

–Nikola Tesla

“On Light And Other High Frequency Phenomena.” Lecture delivered before the Franklin Institute, Philadelphia, February 1893, and before the National Electric Light Association, St. Louis, March 1893.

image

🐐

image

Nikola Tesla and the True Explanation of the Photoelectric Effect

by J. J. J.

The photoelectric effect is a phenomenon which occurs when electromagnetic radiation, such as ultraviolet light, is exposed to certain metallic objects causing the metals to emit electrons from their surface.

In 1905, Albert Einstein gained world fame for supposedly being the first scientist to successfully describe this effect. His theory was that light had little packets (quanta) of energy, or photons, and when exposed to metallic objects at certain frequencies the electrons in these metallic objects would absorb this energy and be broken off from their source. Hence, photoelectrons.

image

This theory led to the wave-particle duality of light since light seemed to act as both a wave and a particle. In 1921, Einstein was awarded the Nobel Prize in Physics for his theoretical and mathematical explanations of this effect. A theory that even today is still accepted as a fact. But According to experiments, research and data collected by Nikola Tesla, Einstein and many other scientists overlooked some key factors in their interpretations of the effect. 

The history of the photoelectric effect goes back to 1887, when Heinrich Hertz first observed electromagnetic waves in experiments, first predicted by James Clerk Maxwell over twenty years before. After this great discovery, Phillip Lenard and many other scientists, including Nikola Tesla, followed Hertz’ work with their own investigations into the matter.

In 1889, after freeing himself from work in Pittsburgh, Tesla returned to New York to begin work on high-frequency apparatuses, wireless transmission, and to develop theories on the relationship between light and electromagnetic radiation. It was right around this time in Tesla’s life when he was starting to gain fame. His alternating current system was finally getting recognition, and he was being asked to give lectures and demonstrations all over the world. On top of this, he was making new discoveries one after another. One very important discovery he made was the discovery of X-rays in 1884, which he called “shadowgraphs.” These mysterious radiations were still very new to him at this time so he wouldn’t realize their importance until a year later when Wilhelm Roentgen made public the same discovery that would win him the first ever Nobel Prize in Physics in 1901. Unfortunately, Tesla’s laboratory would burn down eight months before Roentgen announced his discovery, and the inventor would lose all his laboratory data, notes, plans, photographs, tools, and inventions. So it must be noted that Nikola Tesla was indeed the first scientist to discover X-rays.

After recovering from the fire that destroyed his laboratory March of 1895, a tragedy that set him back a great deal in work and recognition, Nikola Tesla was finally able to resume his work in 1896. With experiments on radiant energy, such as radio waves and X-rays, not only would Nikola Tesla become the first scientist to discovery radioactivity and electrons, but he would be the first scientist to propose that light and other electromagnetic radiations had both particle-like and wave-like properties–predating Henri Becquerel’s radioactivity discovery by a few months, J.J. Thompson’s discovery of the electron by a couple years, and Einstein and other quantum physicist’s light theory by nearly a decade. But Tesla’s views on these effects were much different than other’s.

In experiments with his newly developed high-vacuum tubes and his high-frequency disruptive coil (Tesla Coil), Tesla shot cathode, and other rays at different metals noting the differences in reflection the streams made upon the metals. His experiments indicated six conclusions.

  1. His highly exhausted bulbs emit material streams which, impinging on the metallic surfaces experimented with, are reflected.
  2. These streams are formed of matter in some primary or elementary condition (what we now consider photons/or electrons).
  3. These material streams are probably the same agent which is the cause of the electro-motive tension between metals in close proximity, or actual contact, and they may possibly, to some extent, determine the energy of combination of the metals with oxygen.
  4. Every metal or conductor is more or less a source of such streams.
  5. These streams must be produced by some radiations which exist in the medium.
  6. These streams resembling the cathodic must be emitted by the sun (cosmic radiations) and probably also other sources of radiant energy, such as an arc light or Bunsen burner. 

He considered all conclusions incontrovertible, and with these results, Tesla believed it probable that there is a continuous supply of such radiations in the medium in some form which must come from the sun. Later experiments with the above conclusion would lead Tesla to his discovery of cosmic rays, which he also discovered come from not only our sun, but from every other star outside our solar system. This discovery would be fifteen years before Victor Hess who also won a Nobel Prize for this discovery, and who even today we still recognize as the discoverer of cosmic rays. 

Tesla also suggested that the primary particles composing the radiations are broken into smaller particles by impact against the metals, and are thereby enabled to pass into the air. His analogy was that of shooting a bullet at a wall. When the bullet strikes the wall it is crushed and spatters in all directions radial to where it hit the wall.

image

So according to Tesla, the energy from the flying pieces can only come from that of the bullets, and the results will differ based on the density of the wall, and or the velocity of the bullets. For instance, X-rays are incomparably smaller than cathode rays and have a higher velocity, which is why we are unable to detect x-rays and assume them to be massless photons, while cathode rays are slower so we have been able to label them electrons. This is how Tesla’s radioactivity theory differs from today’s. He realized it was the cosmic rays, and other sources of radiation that cause the radioactivity on earth. We believe the metals, or the elements themselves are producing the radioactivity and emitting electrons, like Einstein’s photoelectric theory suggests, but Tesla’s theory obviously suggests otherwise.

Now to make the above experiments more precise and prove his cosmic radiation theory further, Tesla developed a better method. He used two conductors and connected them to terminals of a condenser which had a considerable electrostatic captivity. One conductor was a metal plate (’P’ in Fig. 1) which was exposed to the Sun’s, and other radiations, and the other being grounded (’p’ in fig. 1) since it is a supply of negative electricity. Now Tesla could derive from a great mass of air, ionized by the radiation disturbance, a current, and store its energy in the condenser (’C’ in Fig. 1).

image

He could also discharge the current through an indicating device. This method did away with the limitations and incertitude of the electroscope and gave Tesla much better results. He filed a patent based off these results titled, “Apparatus of the Utilization of Radiant Energy,” published in 1901. This would obviously be a precursor to solar panels, but still more advanced than today’s panels because it ran off cosmic radiation and not just our sun’s light. 

So in order to get results like Tesla obtained, one would need to reproduce Tesla’s experiments and patents. You can search anywhere online and see demonstrations of the photoelectric effect, but all are using the weakest instruments to demonstrate the effect–like a basic ultraviolet light and an electroscope. The fact that today’s physical science relies on such demonstrations to prove its theories seems to show that science may not be as advanced as we tend to believe.   

Tesla’s work would obviously get ignored by main stream science, but it seems that today’s technology, which seemingly works off Albert Einstein’s theories, are in reality, working off Tesla’s.

“There can be no great harm in a student taking an erroneous view, but when great minds err, the world must dearly pay for their mistakes.”

–Nikola Tesla

“On Light And Other High Frequency Phenomena.” Lecture delivered before the Franklin Institute, Philadelphia, February 1893, and before the National Electric Light Association, St. Louis, March 1893.

image

drnikolatesla:

Nikola Tesla Won 8 Nobel Prizes For His Work And Discoveries. No He Didn’t. These People Did Instead.

  1. Wilhelm Conrad Röntgen, Physics, 1901: Wilhelm Roentgan was awarded the first Nobel Prize in physics for his discovery of X-Rays on November 8, 1895. Not many know this but Tesla was working with X-Rays prior to Roentgen in 1892, but used the term “radiant matter” instead. He conducted numerous experiments and some of the first imaging, which he called “shadowgraphs,” using these unknown rays in his laboratory before its destruction by fire on March 13, 1895. Tesla was also the first to warn the scientific world on the harms of these rays if not used properly.
  2. Marie Curie, Pierre Curie and Antoine Henri Becquerel, Physics/Chemistry, 1903/1911: The three shared the 1903 Nobel Prize in Physics for their discovery and work on radioactivity in 1898. Madame Curie won the 1911 Nobel Prize in Chemistry for her discovery of radium and polonium, also in 1898. Tesla discovered radioactivity in experiments with X-Rays in 1896, and published many articles on the subject in scientific periodicals prior to the three.
  3. Joseph John Thomson, Physics, 1906: Thomson was awarded the Nobel Prize for his discovery of the electron in 1897. Tesla originally called electrons “matter not further decomposable” in his experiments with radiant energy in 1896, but his finding of the electron goes back to when he and Thomson had a back and forth debate in 1891 about experiments with alternating currents of high frequency. Tesla claimed that his experiments proved the existence of charged particles, or “small charged balls.” Thomson denied Tesla’s claim of verifying these particles with his vacuum tubes until witnessing Tesla’s experiments and demonstrations given in a lecture before the Institute of Electrical Engineers at London in 1892. Thomson then adapted to Tesla’s methods and was able to create equipment which allowed him to produce the required high frequencies to investigate and establish his electron discovery. 
  4. Guglielmo Marconi and Karl Ferdinand Braun, Physics, 1909: Both shared the Nobel Prize for their work and development of radio. Marconi is known for proving radio transmission by sending a radio signal in Italy in 1895, but it is a fact that he used Tesla’s work to establish his discovery. Tesla invented the “Tesla Coil” in 1891, which radio relies on, and the inventor proved radio transmission in lectures given throughout 1893, sending electromagnetic waves to light wireless lamps. Tesla filed his own basic radio patent applications in 1897, and were granted in 1900. Marconi’s first patent application in the U.S. was filed on November 10, 1900, but was turned down. Marconi’s revised applications over the next three years were repeatedly rejected because of the priority of Tesla and other inventors. After Tesla’s death in 1943, the U.S. Supreme Court made Marconi’s patents invalid and recognized Tesla as the true inventor of radio.
  5. Charles Glover Barkla, Physics, 1917: Barkla was awarded the prize for his work with Rontgen radiation and the characteristics of these X-rays and their secondary elements and effects. He was educated by J. J. Thomson. Again, Tesla worked with and explained these radiations in full detail throughout the late 1890s, showing that the source of X-rays was the site of first impact of electrons within the bulbs. He even investigated reflected X-rays and their characteristics such as Barkla.
  6. Albert Einstein, Physics, 1921: Einstein was awarded the prize for his theoretical theories which are still praised today, and also his discovery of the law of the photoelectric effect (I have many other post that show Tesla’s fair arguments against Einstein’s theories so I will only dwell on the photoelectric effect). Einstein first postulated that light has a nature of both waves and particles in 1905. This lead to the development of “photons,” or photo electrons, which gave light a wave-particle duality. Now it must be noted that Nikola Tesla wasn’t just a theoretical physicist like Einstein, but was an experimental physicist as well. In 1896, Nikola Tesla was the first to promulgate that energy had both particle-like and wavelike properties in experiments with radiant energy. He set up targets to shoot his cathode rays at which upon reflection, projected particles, or vibrations of extremely high frequencies. Instead of taking the particle-wave duality route, he proposed that they were indeed vibrations, or basically sound waves in the ether. Nikola Tesla preceded by Einstein 4 years on the photoelectric effect publishing a patent titled “Apparatus of the Utilization of Radiant Energy.” filed in 1901, based off his experiments with radiant energy. He had a far better understanding on the matter than Einstein had, because he actually developed experimentations to prove his theories.
  7. James Chadwick, Physics, 1935: Awarded the prize for his discovery of the neutron in 1932. Tesla’s discovery of neutrons goes back to his work with cosmic rays, again in 1896, which are mentioned in the next bit. He investigated and discovered that cosmic rays shower down on us 24/7, and that they are small particles which carry so small a charge that we are justified in calling them neutrons. He measured some neutrons from distance stars, like Antares, which traveled at velocities exceeding that of light. Tesla succeeded in developing a motive device that operated off these cosmic rays
  8. Victor Franz Hess, Physics, 1936: Hess won the Prize for his discovery of the cosmic rays in 1919. Tesla predated him 23 years publishing a treatise in an electrical review on cosmic rays in 1896. Tesla’s knowledge on the matter surpasses even today’s understanding of cosmic rays.

If this isn’t proof enough that Nikola Tesla got shit on, then I will add that Tesla definitely should have won the Nobel Prize for being the first person to invent the commutatorless alternating current induction motor (a huge part of the electrical power system we still use today), for his inventions and work with light bulbs, radar, for his invention of remote control, and most importantly for demonstrating the transmission of electrical energy/power without wires. Ahead of his time is an understatement.

Screw the Nobel Prize.

drnikolatesla:

The History of the Photoelectric Effect

In 1905, Albert Einstein gained world fame for supposedly being the first to propose that light has a nature of both a wave and a particle. This theory lead to the development of “photons,” or photo-electrons, which describe light with a wave-particle duality. In 1921, Einstein was awarded the Nobel Prize in Physics for his theoretical physics and his explanation of the photoelectric effect. A theory that even today is still accepted as a certainty.

In 1887, Heinrich Hertz discovered the photoelectric effect, but it is a fact that Nikola Tesla was the first to explain the effect. Einstein was a very intelligent scientist, but he lacked wisdom. Unlike Einstein, Nikola Tesla wasn’t just a theoretical physicist who based all his theories off other scientists’ work (like James Clerk Maxwell and Heinrich Hertz), but was an experimental physicist as well, who based all his theories off experimental research and data from which he himself conducted and recorded.

In 1896, with experiments with radiant energy and high-vacuum tubes, Nikola Tesla was the first to publicize that light had both particle-like and wave-like properties–predating Einstein and other quantum physicists by nine years. With his high-vacuum tubes, or cathode ray tubes, Tesla shot cathode rays at different metals noting the differences in reflection the streams made upon the metals. Initially, he noticed the streams, being shot at the metals like bullets, broke into smaller particles, and or, vibrations of extremely high frequencies (technically, this would be the first demonstration of breaking electrons into subatomic particles), but upon further investigation he proved that they were indeed just waves. This lead to his conclusion that light is merely a transverse, longitudinal disturbance in the ether, involving alternate compressions and rarefactions, or in his words, “light can be nothing else than a sound wave in the ether.” Tesla would go on to file a patent based off these experiments titled, “Apparatus of the Utilization of Radiant Energy,” published in 1901.

Tesla’s conclusions would obviously get ignored by main stream science, but it seems that today’s technology, which seemingly works off Albert Einstein’s theories, are in reality, working off Tesla’s.

Ahead of his time!

drnikolatesla:

The History of the Photoelectric Effect

In 1905, Albert Einstein gained world fame for supposedly being the first to propose that light has a nature of both a wave and a particle. This theory lead to the development of “photons,” or photo-electrons, which describe light with a wave-particle duality. In 1921, Einstein was awarded the Nobel Prize in Physics for his theoretical physics and his explanation of the photoelectric effect. A theory that even today is still accepted as a certainty.

In 1887, Heinrich Hertz discovered the photoelectric effect, but it is a fact that Nikola Tesla was the first to explain the effect. Einstein was a very intelligent scientist, but he lacked wisdom. Unlike Einstein, Nikola Tesla wasn’t just a theoretical physicist who based all his theories off other scientists’ work (like James Clerk Maxwell and Heinrich Hertz), but was an experimental physicist as well, who based all his theories off experimental research and data from which he himself conducted and recorded.

In 1896, with experiments with radiant energy and high-vacuum tubes, Nikola Tesla was the first to publicize that light had both particle-like and wave-like properties–predating Einstein and other quantum physicists by nine years. With his high-vacuum tubes, or cathode ray tubes, Tesla shot cathode rays at different metals noting the differences in reflection the streams made upon the metals. Initially, he noticed the streams, being shot at the metals like bullets, broke into smaller particles, and or, waves of extremely high frequencies (technically, this would be the first demonstration of breaking electrons into subatomic particles), but upon further investigation he proved that they were indeed just waves. This lead to his conclusion that light is merely a longitudinal disturbance in the ether, involving alternate compressions and rarefactions, or in his words, “light can be nothing else than a sound wave in the ether.” Tesla would go on to file a patent based off these experiments titled, “Apparatus of the Utilization of Radiant Energy,” published in 1901.

Tesla’s conclusions would obviously get ignored by main stream science, but it seems that today’s technology, which seemingly works off Albert Einstein’s theories, are in reality, working off Tesla’s.

Ahead of his time!