Category: hydropower


“It should be borne in mind that electrical energy obtained by harnessing a waterfall is probably fifty times more effective than fuel energy. Since this is the most perfect way of rendering the sun’s energy available, the direction of the future material development of man is clearly indicated. He will live on “white coal.” Like a babe to the mother’s breast will he cling to his waterfall. “Give us our daily waterfall,“ will be the prayer of the coming generations. Deus futurus est deus aquae deiectus!”

–Nikola Tesla

“The Transmission of Electrical Energy Without Wires As a Means for Furthering Peace.“ Electrical World and Engineer, January 7, 1905



By Edward Marshall

Syracuse Herald, February 29, 1920.

… —As time goes on we may find the harnessing of the sun—s rays less objectionable, especially as great improvements are possible in the methods and devices so far employed… . —wind power is not to be distained— … —terrestrial heat, on an immense scale appears quite feasible and there is a strong probability that at a time not too distant projects will be seriously undertaken–…

Can the world get from its rainfall all the power it needs or ever will need, though the demand for power be multiplied a hundredfold?

Nikola Tesla tells me that this can be done.

No living human being is better qualified to speak.

He has been studying all our various sources of energy and rejects them all save this.

He sees no hope in the suggested possibility of harnessing atomic energy; he sees none in the suggested utilization of the vast force of the ocean’s tides; the power of ocean waves cannot be harnessed; heat from the earth’s interior for the creation of steam is not generally available or to be made available; sun-engines are not practical; windpower is not dependable; coal and oil are decreasing in availability and therefore increasing in cost.

So Tesla, realizing that the sun is the source of all the energy we know or ever can know, plans to harness it through the medium of water power.

And he makes the amazing statement that water-power can be controlled almost at will through the control of rainfall, which he regards now as a fully feasible thing.


Perhaps of all the fascinating things he says in the interview which follows, this statement that rainfall can be controlled is the most engaging. But he leaves his plan for it a mystery.

Our talk resulted from a casual statement made recently while we were discussing for publication in the Syracuse Herald the announcement from London that Marconi had heard upon his wireless instruments sounds which might have been, he thought, signals from inter-stellar space and possibly from Mars.

That afternoon Tesla had spoken of our need for new power sources and, when I asked him if they were available, had answered:


So yesterday I asked him to explain.

One must listen to him with profound respect as one of the world’s greatest scientists. To catalogue his discoveries and inventions would be an extraordinary task, which I shall not attempt.

His name is known throughout the progressive world.

“Are our present sources of power sufficient for our future needs?” I asked.

“No.” said Mr. Tesla.

“Have we other sources to be utilized?”

“One, only, I believe,” he answered, “the fundamental source, the sun, manifested through water.”

“But water power, even though it be developed, is not generally enough distributed to fill all our needs.”

“That can be arranged,” said this extraordinary man, and then began a smooth, unhesitant statement of the whole vast problem which in the last analysis is the problem of human comfort and well being. Indeed, of human life itself. And this rapid fire of scientific fact gathered force and speed as it progressed, carrying me over technicalities and through scientific terms without a stop until its final vital statement about control of rainfall at man’s will left me gasping.

Power of Future.

“Technical improvements, more or less essential,” said Mr. Tesla, “have made it possible for mankind to aggregate in civilized communities, thus economizing effort, insuring the comfort and safety of existence, and raising life in general to a higher plane of culture and refinement.

"In the beginnings, therefore, we were wholly subject to the forces of nature. Our ultimate goal seems to be their complete mastery. Millions of human beings, almost never or even never see the sun, and yet our dependence on it is absolute.

"Those few who are mindful of the future long ago ceased to look upon power as a mere means of securing individual safety and comfort, learning to attach to it a significance national, international and humanitarian.

"Not only this, but the idea is slowly gaining ground that the resources we command belong as much to coming generations as to our own and the thoughts of engineers and inventors are turning to the discovery of such an improvement in methods as will do away with the barbarous waste now going on, which, in the end, must exhaust our stores.

"This is the reason why all sorts of sensational announcements relative to new sources of power create such a hysterical interest and find such ready if sometimes unintelligent acceptance. Not more than one out of a thousand, even among professional men, is able to sift the wheat from the chaff.

Dream of Atomic Energy.

"As an instance I may refer to the harnessing of atomic energy which now seems to be the plan uppermost in the speculative public mind. Much of the discussion on this subject is of the same order of merit as talk about communion with the spirts of the dead, or similar nonsense springing from a morbid craving for the perpetuation of self. It is contradictory to all natural laws, reason and experience.

Water Power Ideal

"In most of the processes of transformation we are confronted with appalling waste and definite limits exist to improvements aiming at economy. No amount of ingenuity can ever circumvent the natural laws imposing these restrictions.

"Water power is a remarkable exception in this respect. In hydraulic development the wheel can have an efficiency of 85 and the dynamo can have an efficiency of 98 per cent. so that the combined efficiency is over 83 per cent. That is to say, we are enabled in this way usefully to apply almost the entire energy furnished by the sun.

"Not only this but the apparatus is simple, well-nigh indestructible, and requires virtually no attention.

"Unfortunately this source of power supply is not adequate to meet all our needs, although the theoretical energy of falling water is, so to speak, unlimited. Assuming for the rain clouds an average height of 15,000 feet and an annual precipitation of 33 inches, the power over the whole area of the United States amounts to more than twelve billion horsepower but a large portion of the potential energy is transformed into heat by friction of the rain drops against the air so that the actual mechanical energy is much smaller.

"Most of the water comes from a height of something like 2,000 feet, and all in all represents over one-half a billion horsepower, but in the form but in the form of available waterpower we cannot obtain more than a fall of 100 feet, so that by harnessing all the falls in the United States not more than eighty million horsepower can be developed.

"So far we have harnessed approximately 8,000,000 horsepower in this country, thus effecting a saving equivalent to nearly one-third of the entire coal mined. By extensive damming the power derived can be greatly increased, possibly to several hundred million horsepower, giving us more power by far than we have now with all our coal. But this is not the limit.

On the Eve of Great Feats.

"We are on the eve of accomplishments which will be of tremendous consequence to the future advancement of the human race. One of these is the control of the precipitation of moisture.

"The water is evaporated and thus raised against the force of gravity. It is then held in suspension in the vapor which we call clouds. Air currents carry this vapor, hither and yon, often to distant regions, where it may remain for long periods at a height, in a state of delicate suspension.

"When the equilibrium is disturbed the water falls to earth [in the] form of rain and through rills and rivers flows back to the ocean.

"Thus the sun, those heat causes the evaporation, even maintains this life sustaining stream. The energy necessary to cause the precipitation of the rain, compared to that rain’s potential energy when released, is like that of the spark setting off a charge of dynamite compared to the dynamite.

"If this part of the natural process were under the control of man he could transform the entire globe.

Many schemes have been proposed to this end, none of which have knowledge offering the remotest chance of success.

“But I have ascertained that with proper apparatus this wonder can be performed.

"Any amount of power will then be at our disposal; we can make out of deserts fertile land and create lakes and rivers almost without effort on our part.

"However our triumph would not be complete if the power could not be conveyed to distances without limit. This achievement, to, is now within our reach. With my wireless system it is practicable to transmit electrical energy over a distance of 12,000 miles with a loss not exceeding 5 per cent. I can conceive of no advances which would be more desirable at this time and be more beneficial to the further progress of mankind.”

— (Copyright by Edward Marshall Syndicate, Inc.)



“I am a reader of your excellent paper and frequently preserve excerpts of interest to me for future reference.

“One of these is an article by William Engle, in your issue of June 29, 1934, dealing with hydro-electric development in which the author characterizes my recent announcement of a new inexhaustible source of power as "nebulous.”

“All preliminary information is necessarily incomplete, but I always make sure that it is based on demonstrated fact and accurate as far as it goes. My illustrious namesake, Copernicus, used to go twenty times over his scientific statements before giving them out; nevertheless, compared with the attention I bestow upon my own, he might have been considered a careless man.

"The author of the article gives an eloquent account of water power development, recalling vividly to my mind the almost miraculous way in which success with my alternating system was achieved. As I review the past, I realize how fortunate it was that at the time when, after years of fruitless talking to deaf ears, I finally managed to be heard by a few, there was a man in the electrical industry towering above all others, like Samson over the Philistines. A genius of the first degree, inventive ability and mastery of business, a man truly great, of phenomenal powers—George Westinghouse. He espoused my cause and undertook to wage a war against overwhelming odds.

"The alternating current was completely discredited, decried as deadly and of no commercial value. Edison thought that the wires might be used for hanging laundry to dry. Steinmetz had a very poor opinion of my induction motor. The old interests were powerful and resolved to fight any encroachment on their business by all means fair or foul. But Westinghouse was not dismayed and threw all his energy and resources into the battle of the century. More than once he came near to being snuffed out, but finally he routed his opponents and put the new industry on a firm foundation. It was a monumental achievement unparalleled in the history of technical development. The service he rendered to the world is beyond estimate.

"But it took another human dynamo, a genius of a different kind—Samuel Insull—to enlarge on the work of Westinghouse and apply the system on a colossal scale.

"Insull concentrated his efforts on cheapening the production, transmission and distribution of power. He recognized early the economic advantages of large units and prevailed upon the manufacturers to supply him with huge turbo-generators, regardless of cost. He introduced other improvements raising the efficiency and range of central stations and finally realized, practically and successfully, the Super Power System which I had barely suggested in 1893. The results he obtained were such as to astonish engineers, and his bold example was quickly followed here as well as in other countries, saving immense sums of money to the consumers.

"At present the work of Westinghouse and Insull is carried further in every corner of the globe, providing new resources, transforming cities and communities and contributing to the safety, comfort and convenience of hundreds of millions. Let us thank the stars that these great pioneers lived in our time, as otherwise we might have had to wait a century for the benefits we now enjoy.”

–Nikola Tesla

New York.

New York World Telegram, July 24, 1934.

“For our existence and comfort we require heat, light and mechanical power.  How do we now get all…

“For our existence and comfort we require heat, light and mechanical power.  How do we now get all these? We get them from fuel, we get them by consuming material. What will man do when the forests disappear, when the coal fields are exhausted? Only one thing according to our present knowledge will remain; that is, to transmit power at great distances. Men will go to the waterfalls, to the tides, which are the stores of an infinitesimal part of Nature’s immeasurable energy. There will they harness the energy and transmit the same to their settlements, to warm their homes by, to give them light, and to keep their obedient slaves, the machines, toiling. But how will they transmit this energy if not by electricity? Judge then, if the comfort, nay, the very existence, of man will not depend on electricity. I am aware that this view is not that of a practical engineer, but neither is it that of an illusionist, for it is certain, that power transmission, which at present is merely a stimulus to enterprise, will some day be a dire necessity.”

–Nikola Tesla

“On Light And Other High Frequency Phenomena.” Lecture delivered before the Franklin Institute, Philadelphia, February 1893, and before the National Electric Light Association, St. Louis, March 1893.